

Basiskonzept: Chemische Reaktion	Lernjahr II

Idee 1:

Damit Stoffe miteinander reagieren, müssen bestimmte Voraussetzungen erfüllt sein.

Erwartungen:

Schülerinnen und Schüler wissen, dass ...

- Edelgase nicht mit anderen Stoffen reagieren.
- die beteiligten Atome den Edelgaszustand erreichen, wenn die Stoffe miteinander reagieren.
- die Reaktionsbedingungen für den Ablauf einer chemischen Reaktion eine Rolle spielen:
 - Temperatur: erwärmen, abkühlen,
 - Aktivierungsenergie,
 - o Druck.

Grenzen:

Schülerinnen und Schüler müssen – bezogen auf diese Kernidee – nicht wissen, ...

 dass der Einfluss von Druck und Temperatur mit dem Prinzip des kleinsten Zwanges erklärt werden kann (Prinzip von Le Chatelier).

Gängige fehlerhafte Schülervorstellungen:

Bezüge zum Kernlehrplan der Gesamtschule – Sek I:

- die Bedingungen für einen Verbrennungsvorgang beschreiben und auf dieser Basis Brandschutzmaßnahmen erläutern.
- die Bedeutung der Aktivierungsenergie zum Auslösen einer chemischen Reaktion erläutern.
- Korrosion als Oxidation von Metallen erklären und einfache Maßnahmen zum Korrosionsschutz erläutern.

Basiskonzept: Chemische Reaktion	Lernjahr II

Idee 2:

Atome reagieren so, dass sie die Edelgaskonfiguration erreichen.

Erwartungen:

Schülerinnen und Schüler wissen, dass ...

- eine vollbesetzte Außenschale (Edelgaskonfiguration) einen stabilen Zustand beschreibt.
- Atome die Edelgaskonfiguration durch Aufnahme oder Abgabe von Elektronen erreichen können.
- in einer Verbindung mehrere Atome die Edelgaskonfiguration auch durch das gemeinsame Nutzen von Elektronenpaaren erreichen können.
- 8 Elektronen zur Erfüllung der Edelgaskonfiguration notwendig sind (Ausnahme: beim Wasserstoff 2 Elektronen).

Grenzen:

Schülerinnen und Schüler müssen – bezogen auf diese Kernidee – nicht wissen, ...

• dass es Reaktionen gibt, bei denen Atome keine Edelgaskonfiguration erreichen.

Gängige fehlerhafte Schülervorstellungen:

 Geladene Teilchen müssen ihre Ladung ausgleichen, um Idealzustand zu erreichen.

n and a second	Not at the silver		
Basiskonzept: Chemische Reaktion	Lernjahr II		
Idee 3:			
Chemische Reaktionen lassen sich durch Reaktionsgleichungen beschreiben.			
Erwartungen:			
Schülerinnen und Schüler wissen, dass			
· bei chemischen Reaktionen Atome umgruppiert werden.			
• bei chemischen Reaktionen die Anzahl der Atome erhalten bleibt.			
 die Ladung der an der Reaktion beteiligten Stoffe auf beiden Seiten der Reakti- onsgleichung ausgeglichen sein muss. 			
 Ausgangsstoffe/Edukte und Endstof ben werden. 	fe/Produkte anhand von Formeln beschrie-		
 die Formeln für die beteiligten Stoff nicht verändert werden dürfen. 	e beim Einrichten einer Reaktionsgleichung		
 Stoffe immer in konstanten Atomza setzmäßigkeit). 	hlverhältnissen miteinander reagieren (Ge-		
 Verbindungen verknüpft und wiede 	r aufgebrochen werden können.		
Grenzen:			
Schülerinnen und Schüler müssen – bezoge	n auf diese Kernidee – nicht wissen,		
• wie sich Gleichgewichtsreaktionen a	als Reaktionsgleichungen darstellen lassen.		
Canada fablashafta Cabillam anatallumman			

D '	1 1 1			
Basiskonzept: Chemische Reaktion	Lernjahr II			
Idee 4:				
Ionische Verbindungen entstehen, wenn St	offe miteinander reagieren und Elektronen			
übertragen werden.				
Erwartungen:				
Schülerinnen und Schüler wissen, dass				
 Atome Elektronen aufnehmen und abgeben können. 				
. die Anzahl der abgegebenen/aufge	nommenen Elektronen und die Verhältnis-			
 die Anzahl der abgegebenen/aufgenommenen Elektronen und die Verhältnis- formel sich gegenseitig bedingen. 				
auf diese Weise Moleküle Ionen bilden können.				
typischerweise Metalle und Nichtmetalle miteinander ionische Bindungen ein-				
gehen.	Ç			
Grenzen:				
Schülerinnen und Schüler müssen – bezogen auf diese Kernidee – nicht wissen,				
g				
Gängige fehlerhafte Schülervorstellungen:				

offen im benken	Nordrhein-Westfalen		
Basiskonzept: Chemische Reaktion	Lernjahr II		
Idee 5:			
Verbindungen mit Elektronenpaarbindungen entstehen, wenn Stoffe miteinander reagieren und die Außenschalen der Atome überlappen.			
Erwartungen:			
Die Schülerinnen und Schüler wissen, dass			
Elektronen der Bindungen für beide Bindungspartner gezählt werden.			
für alle Atome der beteiligten Stoffe die Edelgaskonfiguration erfüllt sein muss.			
 die Elektronenpaarbindung charakteristisch für eine Verbindung von Nichtmetall- und Nichtmetall-Atomen ist. 			
Grenzen:			
Schülerinnen und Schüler müssen – bezogen auf diese Kernidee – nicht wissen,			
Gängige fehlerhafte Schülervorstellungen:			

DUISBURG ESSEN	
Offen im Denken	

Basiskonzept: Chemische Reaktion	Lernjahr II
----------------------------------	-------------

Idee 6:

Bei Redoxreaktionen werden gleichzeitig Elektronen zwischen den Reaktionspartnern abgegeben und aufgenommen.

Erwartungen:

Schülerinnen und Schüler wissen, dass ...

- die Elektronenaufnahme als Reduktion bezeichnet wird.
- die Elektronenabgabe als Oxidation bezeichnet wird.
- das Redoxverhalten der Metalle untereinander durch die Redoxreihe der Metalle beschrieben werden kann.

Grenzen:

Schülerinnen und Schüler müssen – bezogen auf diese Kernidee – nicht wissen, ...

- wie eine quantitative Erfassung erfolgt.
- dass es eine Mindestspannung und Überspannung gibt.
- dass es eine Spannungsreihe gibt.

Gängige fehlerhafte Schülervorstellungen: