Logo Qualitäts- und UnterstützungsAgentur

Startseite Bildungsportal NRW

Orientierungsbereich (Sprungmarken)

Q-Phase Leistungskurs Funktionen und Analysis (A)

Hinweis: Thema, Inhaltsfelder, inhaltliche Schwerpunkte und Kompetenzen hat die Fachkonferenz des Riese-Gymnasiums/der Riese-Gesamtschule verbindlich vereinbart. In allen anderen Bereichen sind Abweichungen von den vorgeschlagenen Vorgehensweisen bei der Konkretisierung der Unterrichtsvorhaben möglich. Darüber hinaus enthält dieser schulinterne Lehrplan in den Kapiteln 2.2 bis 2.4 übergreifende sowie z. T. auch jahrgangsbezogene Absprachen zur fachmethodischen und fachdidaktischen Arbeit, zur Leistungsbewertung und zur Leistungsrückmeldung. Je nach internem Steuerungsbedarf können solche Absprachen auch vorhabenbezogen vorgenommen werden

 

Thema: Natürlich: Exponentialfunktionen und Logarithmus (Q-LK-A5)

Zu entwickelnde Kompetenzen

Vorhabenbezogene Absprachen und Empfehlungen

Inhaltsbezogene Kompetenzen:

Die Schülerinnen und Schüler

  • beschreiben die Eigenschaften von Exponentialfunktionen und begründen die besondere Eigenschaft der natürlichen Exponentialfunk­tion
  • nutzen die natürliche Logarithmusfunktion als Umkehrfunktion der natürlichen Exponentialfunktion
  • bilden die Ableitungen weiterer Funktionen:

    • natürliche Exponentialfunktion
    • Exponentialfunktionen mit beliebiger Basis
    • natürliche Logarithmusfunktion
  • nutzen die natürliche Logarithmusfunktion als Stammfunktion der Funktion: x à 1/x .

Prozessbezogene Kompetenzen:

Problemlösen

Die Schülerinnen und Schüler

  • erkennen und formulieren einfache und komplexe mathematische Probleme (Erkunden)
  • entwickeln Ideen für mögliche Lösungswege (Lösen)
  • nutzen heuristische Strategien und Prinzipien (z. B. systematisches Probieren, Darstellungswechsel, Invarianten finden, Zurückführen auf Bekanntes, Zerlegen in Teilprobleme)(Lösen)
  • führen einen Lösungsplan zielgerichtet aus (Lösen)
  • variieren Fragestellungen auf dem Hintergrund einer Lösung (Reflektieren)

Werkzeuge nutzen

Die Schülerinnen und Schüler

  • verwenden verschiedene digitale Werkzeuge zum
    • zielgerichteten Variieren der Parameter von Funktionen
    • grafischen Messen von Steigungen
  • entscheiden situationsangemessen über den Einsatz mathematischer Hilfsmittel und digitaler Werkzeuge und wählen diese gezielt aus
  • nutzen mathematische Hilfsmittel und digitale Werkzeuge zum Erkunden und Recherchieren, Berechnen und Darstellen

Zu Beginn des Unterrichtsvorhabens empfiehlt sich eine Auffrischung der bereits in der Einführungsphase erworbenen Kompetenzen durch eine arbeitsteilige Untersuchung verschiedener Kontexte in Gruppenarbeit mit Präsentation (Wachstum und Zerfall).

Im Anschluss werden die Eigenschaften einer allgemeinen Exponentialfunktion zusammengestellt. Der GTR unterstützt dabei die Klärung der Bedeutung der verschiedenen Parameter und die Veränderungen durch Transformationen.

Die Eulersche Zahl kann z. B. über das Problem der stetigen Verzinsung. eingeführt werden. Der Grenzübergang wird dabei zunächst durch den GTR unterstützt. Da der Rechner dabei numerisch an seine Grenzen stößt, wird aber auch eine Auseinandersetzung mit dem Grenzwertbegriff motiviert.

Die Frage nach der Ableitung einer allgemeinen Exponentialfunktion an einer Stelle führt zu einer vertiefenden Betrachtung des Übergangs von der durchschnittlichen zur momentanen Änderungsrate. In einem Tabellenkalkulationsblatt wird für immer kleinere h das Verhalten des Differenzenquotienten beobachtet.

Umgekehrt wird zu einem gegebenen Ableitungswert die zugehörige Stelle gesucht.

Dazu kann man eine Wertetabelle des Differenzenquotienten aufstellen, die immer weiter verfeinert wird. Oder man experimentiert in der Grafik des GTR, indem Tangenten an verschiedenen Stellen an die Funktion gelegt werden. Mit diesem Ansatz kann in einem DGS auch der Graph der Ableitungsfunktion als Ortskurve gewonnen werden.

Abschließend wird noch die Basis variiert. Dabei ergibt sich automatisch, dass für die Eulersche Zahl als Basis Funktion und Ableitungsfunktion übereinstimmen.

Umkehrprobleme im Zusammenhang mit der natürlichen Exponentialfunktion werden genutzt, um den natürlichen Logarithmus zu definieren und damit auch alle Exponentialfunktionen auf die Basis e zurückzuführen. Mit Hilfe der schon bekannten Kettenregel können dann auch allgemeine Exponentialfunktionen abgeleitet werden.

Eine Vermutung zur Ableitung der natürlichen Logarithmusfunktion wird graphisch geometrisch mit einem DGS als Ortskurve gewonnen und anschließend mit der Kettenregel bewiesen.

Zum Seitenanfang

© 2024 Qualitäts- und UnterstützungsAgentur - Landesinstitut für Schule